FUNDAMENTALS OF CHEMISTRY 1A (CHEM1001) - June 2008

2008-J-2

• ${}^{63}_{28}\text{Ni} \rightarrow {}^{63}_{29}\text{Cu} + {}^{0}_{-1}\beta$ ${}^{222}_{86}\text{Rn} \rightarrow {}^{218}_{84}\text{Po} + {}^{4}_{2}\text{He}$ • $9.993 \times 10^{14} \text{ s}^{-1}$ $6.622 \times 10^{-19} \text{ J}$

2008-J-3

•

NH ₃	PCl ₅	BrF ₃
ammonia	phosphorus pentachloride	bromine trifluoride
H = N = H H H		:F: :F-Br: :F:
3	5	3
1	0	2
trigonal pyramidal	trigonal bipyramidal	T-shaped

2008-J-4

• $1s^2 2s^2 2p^6 3s^2 3p^5$

When two or more Lewis structures can be drawn for a molecule, the true structure is none of the structures that is drawn, but a type of average made up of all the resonance contributors. Some structures may contribute more than others.

e.g. In benzene, the molecule does not consist of a series of alternating double and single bonds, but is an average of the two structures shown. All of the C-C bonds are exactly the same length.

• **A**: 109° **B**: 120° **C**: 109° **D**: 109° **A** (O) and **D** (N)

2008-J-5

- 21 g O_2 required; 0.40 mol CO_2 produced; 0.50 mol H_2O produced
- BaCO₃

2008-J-6

• $Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$ 0.0020 mol 0.010 mol 0.12 M

2008-J-7

 Dissolve the cadmium chloride in water. CdCl₂(s) → Cd²⁺(aq) + 2Cl⁻(aq) Add a solution of sodium carbonate. Cadmium carbonate will precipitate. Cd²⁺(aq) + CO₃²⁻(aq) → CdCO₃(s) Filter off and wash the precipitate and then dissolve it in dilute sulfuric acid. CdCO₃(s) + 2H⁺(aq) → Cd²⁺(aq) + H₂O(l) + CO₂(g) Evaporate the solution to give cadmium sulfate. Cd²⁺(aq) + SO₄²⁻(aq) → CdSO₄(s)

2008-J-8

- •
- $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ mole fractions: 0.178 N₂, 0.534 H₂, 0.288 NH₃ partial pressures: 8.9 MPa N₂, 27 MPa H₂, 14 MPa NH₃ 1.3×10^{-5} (pressures must be converted to atmospheres for this calculation)

2008-J-9

- 33.6 kJ mol⁻¹
- 0.013

2008-J-10

- 0.026 M
- 10.7 minutes
- 1.30 V

2008-J-11

- $-197.8 \text{ kJ mol}^{-1}$
- 0.129 J g⁻¹ K⁻¹
- $CH_4 < CH_3CH_3 < CH_3CH_2OCH_2CH_3 < CH_3OH < CH_3CH_2OH$

 CH_4 and CH_3CH_3 have only weak dispersion forces; CH_3CH_3 has more atoms so has more dispersion forces.

CH₃CH₂OCH₂CH₃ has dispersion forces and dipole-dipole forces.

 CH_3CH_2OH and CH_3OH have relatively strong H-bonds as well as dispersion forces and dipole-dipole forces. CH_3CH_2OH has more atoms so has more dispersion forces and hence the higher bp.

2008-J-12

• $-1.48 \times 10^{3} \text{ kJ}$ NH₄⁺ -III; NO₃⁻ +V; N₂ 0